PROTECTING COMMUNITIES FROM TOXICS

Michael Bochyński / Clean Water Fund | Danielle Simmons / Virginia League of Conservation Voters

**INTRODUCTION**

More than 80,000 chemicals are currently used in the United States, and most haven’t been adequately tested for their effects on human health. Toxic chemicals find their way into human bodies in a variety of ways - through the air we breathe, through direct contact with our skin, and through the food we eat and the water we drink. Safeguarding drinking water has been one of the largest public environmental concerns since Rachel Carson’s Silent Spring and the current Flint water crisis where over 100,000 residents were exposed to elevated lead levels.

There is currently a particular concern regarding the human health threats from toxic exposure to lead, a broad category of chemicals found in everyday consumer items, and a plastics hardening compound called bisphenol.

**BACKGROUND**

**LAD**
The inside body, lead and calcium compete to be absorbed by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones.

**BACKGROUND**

**LAD**
The inside body, lead and calcium compete to be absorbed by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones.

**BACKGROUND**

**LAD**
The inside body, lead and calcium compete to be absorbed by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones. Children display the strongest absorption by sticking to red blood cells, then moving to soft tissue, then bones.